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Abstract. Literature shows a lack of works based on non-invasive methods for computing the propagation
coefficient v, a complex number related to dynamic vascular properties. Its imaginary part is inversely re-
lated to the wave speed C' through the relationship C' = w/Im(~), while its real part a, called attenuation,
represents loss of pulse energy per unit of length. In this work an expression is derived giving the propa-
gation coefficient when assuming a pulsatile flow through a viscoelastic vessel. The effects of physical and
geometrical parameters of the tube are then studied. In particular, the effects of increasing the reflection
coefficient, on the determination of the propagation coefficient are investigated in a first step. In a second
step, we simulate a variation of tube length under physiological conditions. The method developed here is
based on the knowledge of instantaneous velocity and radius values at only two sites. It takes into account
the presence of a reflection site of unknown reflection coefficient, localised in the distal end of the vessel.
The values of wave speed and attenuation obtained with this method are in a good agreement with the
theory. This method has the advantage to be usable for small portions of the arterial tree.

PACS. 47.15.-x Laminar flows — 47.90.4-a Other topics in fluid dynamics

1 Introduction

The waves generated by the heart, propagate along the
arterial system. Their form changes due to the properties
of artery itself, and the reflections at singularities. To de-
scribe the contribution of arterial properties on pressure
— or velocity — wave propagation, the complex propaga-
tion coefficient « has to be calculated. When considering
an unidirectional propagating wave of an hemodynamic
variable ¢, this coefficient can be introduced by writing in
a complex formulation:

¢ = Aexp (iwt — yx) = Aexp (iw(t — %)) exp (—ax)

ith i
w1 =a 1—.
U C

In this expression a > 0 is the attenuation C' > 0 is the
phase velocity and x the longitudinal coordinate. The de-
termination of propagation coefficient is of a great im-
portance. Attenuation is related to the energy dissipation
due to the blood viscosity, viscoelasticity of the wall, re-
flection in bifurcations and disease sites as atherosclerosis
or occlusion [1]. The imaginary part of propagation co-
efficient is inversely proportional to phase velocity that
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represents a parameter of clinical interest [2,3]. Several
authors use the pulse wave velocity, calculated from the
Moens-Korteweg equation, to derive arterial distensibility
and Young’s modulus. It is strongly correlated to the rhe-
ological properties of vessels walls [4,5]. Other authors use
the pulse wave velocity as a mean to estimate stiffness of
the vessel walls [6,7] and arterial distensibility [8,9]. The
knowledge of the wave speed is also necessary to separate
the arterial wave pressure and flow into their backward
and forward running components [10-13]. Other authors
use the phase velocity as an index of arterial health [14,
15]. The measurement of the propagation coefficient has
been widely used as a mean of assessing the severity of
a disease as atherosclerosis [16]. For the determination of
phase velocity, two ways are used in the literature:

— the first way assumes that the wall mechanical prop-
erties are known. It uses two formulas:
the Moens-Korteweg equation ¢ = \/ Eh / 2pR
the Womersley-Jager equation v = v/Z;Y;
where F is the Young’s modulus of the tube, R its ra-
dius, h its wall thickness, p the fluid density, Z; the lon-
gitudinal impedance and Y; the transverse admittance;
— the second way is based on the measurement of the
pulse wave travelling along the cardiovascular sys-
tem. In the time domain, the phase velocity has been
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evaluated as the ratio of distance d between the two
sites of measurement and the associated transit time.
This method is inaccurate due to the difficulties in
defining the foot of the wave [17]. Applying Fourier-
analysis Milnor [18] calculates an apparent phase ve-
locity, Copp for each harmonic of the signal (fre-
quency f and phase lag Ag):

2 f Ax
Capp = T¢

A new method named “PU-loop” for Pressure Velocity
relationship, derived by Khir et al. [10], has been used
to compute the wave speed, and tested by the authors in
presence of arterial occlusion [19-21]. Rabben et al. [22]
derived an other method to compute the phase velocity
assuming the knowledge of radius and flow rate. Other au-
thors [23,24] used the propagation coefficient determined
by two or three points method to compute the phase ve-
locity ¢ = w/Im(+y). This formula will be used in this work
to compute C¢, a so called “true phase velocity”.

The determination of the propagation coefficient in ar-
terial system has been the subject of many researches in
the last few decades. In absence of significant reflection or
when the reflection coefficient of the distal site was known
(equal to unity), a two-point method based on the mea-
surement of pressure or flow in two sites [25] can be used
allowing the derivation of the true propagation coeflicient.
Investigators using, two-points method [26,27] found val-
ues in agreement with values calculated by Womersley the-
ory. The accuracy of this two-point method is accepted,
but it has a limited application: it assumed a known re-
flection coefficient produced by a total occlusion, which is
not the case in most hemodynamic conditions, when the
lumen of artery is partially occluded.

Without an assumption about one of the parameters
and taking into account reflections from local vascular
sites, Taylor developed a method known as three-point
method based on the measurements of pressure or flow
in three equidistant sites of the vessel of interest. The re-
sults obtained by some authors [28,29] using three points
method, measuring pressures at three sites, are not in
a good agreement with theoretical Womersley’s predic-
tions. Phase velocity found by these investigators was
20% lower, and the attenuation coefficient was about eight
times higher. In other researches, an agreement was found
between theoretical and experimental propagation coeffi-
cient values, for uniform tube [17,30].

In case of an unknown reflection coefficient, a second
approach using four transducers, requiring two measure-
ments of pressure and flow at two sections of the vessel in-
vestigated, has been described by Milnor and Nichols [31],
and used by Milnor and Bertram [32] to measure propaga-
tion coefficient in the femoral and carotid artery. Bertram
et al. [23] described, an iterative general method, for cal-
culating propagation coefficient using two pressure mea-
surements, one flow rate and one diameter vessel. This
method has been used in vivo and in vitro to compute the
propagation coefficient [30] and attenuation [26].

Reasons for discrepancy between several literature
studies are still unclear. Busse et al. [33] explained this
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discrepancy as a result of intrinsic inaccuracy in
experimental techniques. Li et al. [28] explained these
differences as a result of neglecting non linear terms in
Womersley theory. Reuderink et al. [17] demonstrated
that geometrical taper affects the values of propagation
coefficient given by the three-point method only at given
frequencies. Moreover, damping is decreased by tapering
instead of being increased, as found in literature works.
This study shows that for a uniform tube, the celerity
obtained by the three-point method is in a good agree-
ment with that calculated using Womersley theory. This
method is confronted with another difficulty in vivo, in
the fact that many arteries are short and the method re-
quires twice the distance between the transducers. This
distance must be more than a critical length (d) to obtain
measurement with adequate signal-to-noise ratio. In re-
cent studies of propagation coefficient, Bertram et al. [30]
showed that propagation coeflicients obtained by several
techniques were similar; they concluded that the discrep-
ancies between studies in literature can not be due to prob-
lems associated with the methods themselves but caused
by variations in experimental conditions or other unknown
artefacts.

As we have shown, there is several factors of uncer-
tainty in the determination of propagation coefficient and
the literature shows a lack of works based on non-intrusive
methods for the determination of this parameter of clinical
interest. Propagation coefficient has been determined only
invasively. With the aim of solving this problem we pro-
pose in this work a non-invasive method allowing the de-
termination of the propagation coefficient, based on ultra-
sound measurements of velocities and radius at two sites
separated with a known distance (d). This methods re-
quires no assumption about the reflection coefficient con-
versely to major literature works using two-points method.
We will critically re-examine the exactitude of the method
on a determination of waves speed and attenuation for dif-
ferent hemodynamic conditions, using numerical simula-
tion. In particularly we will study, the effects of increasing
the reflection coefficient on a true determination of prop-
agation coefficient (attenuation and wave speed) in first
time. In second time, we will examine the applicability of
the method to physiological conditions by simulation of
several lengths. The effect of noise has also been investi-
gated to simulate experimental conditions.

2 Mathematical model

Consider pulsate, laminar flow through a uniform, vis-
coelastic and impermeable vessel of instantaneous radius
R(z,t), of length L, terminated by an equivalent site of
reflection, with reflection coefficient K.

The fluid is assumed to be Newtonian, incompress-
ible; the viscosity is taken to be constant, the effect of
gravity is negligible. The velocity of the fluid enclosed
within the cylindrical coordinates is denoted by V =
[u(r,z,t),v(r,z,t)], where r is the radial coordinate, z is
the position along the vessel, ¢ is time, u the radial velocity
and v the axial velocity.
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We assume that parietal deformations are small as
compared to the radius R, and that R is small as com-
pared to the wavelength; Moreover, the fluid velocity is
small as compared to wave speed v < C. Each hemody-
namic parameter can be expressed in the form:

(oo}
&(r,x,t) = Z o(r, z, wn) exp iwpt.

We also assumed that the wall of the vessel only undergoes
radial motions.
The flow is assumed to be axisymmetric:

Ov(R, z,t)

0,z,t) =0 d
u(0,x,t) an o

=0. (1)

The no-slip condition is satisfied (the velocity of fluid at
the wall equals the velocity of the wall):

v(R,z,t) =0 and wu(R,z,t)= % (2)
The pressure is quasi constant over the cross-sectional area
of the blood vessel. With these hypothesis the convective
terms in the Navier Stokes equations can be neglected in
accordance to the Womersley theory [41], and the govern-
ing equations given in the following form:
The continuity equation

ou u Ov
E + ; % =0. (3)
In the axial direction
ov 10p 8%v 10w
— = — + —— . 4
ot p8z+n{8r2 rar} )

In the radial direction

ou 19p {8%
= n

o= por o ®)

ror r2|

10u u
por

One makes the assumption of the presence of a single
equivalent site of reflection for this part of the arterial
trunk (fictive region representing the whole of the reflec-
tions of the terminal sites), located at a distance x = L
from the origin of the tube, and 7 is the blood kinematics
viscosity.

Using the linear theory of propagating waves as intro-
duced by Womersley [40], Flaud et al. [13] gave an expres-
sion of the centre line velocity Vi, (z) and of the radius
R, (z) for an harmonic n:

Van(z) = V2, (z = 0) (exp(—7z)
— K exp(—y(2L — 2))) =V}, (x) + Vi, (x) (6)

Rn(z) = R}(z = 0) (exp(—z)
+K exp(—y(2L — 2))) = R} (z) + R (z) (7)
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where, for a wavelength large as compared to the radius
)= VP

of the tube or Ry, <« 1,
1
- 1 - 8
iwnp < J0(22)> ®

Ri(z=0)= 20t Py < 2‘]1(22)) - 1>. (9)

2w2p \ z2 Jo(22

Vf

cln

(x=0

In these expressions the upperscript f (respectively b)
stands for an unidirectional forward (respectively back-
ward) propagating wave, the subscript n for the rank of
the harmonic of the Fourier analysis, cl for the centre mea-
surement. P, is the pressure, Jy and .J; are the zero and
first order of the first kind Bessel function, zo = a,, §3/2
and o, = R+/wy, /7 is the Womersley parameter associ-
ated to the pulsation wy,.

2.1 Theory: computation of the propagation coefficient

Eliminating exp (—vyz) and K exp (—y(2L — x)) from (6)

and (7), one can write:
Vein (%) Ry (z)
R
Ry(x=0)

F ) = V(=

cln

(10)
V) (z =0) H
= Voun(z) + Rp(x) Rfl( =) Ven(z) + Ry (2) -

—_

(11

~—

Yo Y

H 1 (inn (2)

z(1 — Jo(22)) )
R 2J1(22) — z2Jo(22) )

Assuming the measurement of radius and centre line ve-
locity at * = z; and x = x2, the measured quantities
R, (z1), Rn(x2), Van(x1) and Vg, (z2) are now known,
and since

Vi (@2) = Vi (21) exp(—yn d).

We can write, using equations (10)—(13) for sites (1-2):

(13)

Vi (2) Vein(22) + Rn(z2) H/vn
—cnif) — exp(— nd _ .

(14)
Assuming v,d < 1, which is coherent since d is of the
order of a few R, we can develop exp(—7,d) in the vicinity
of zero and we obtain with a third order development:

4 V2nd3 + 3 VQnd2 HRQnd3
HRy,d?

where Vi, = Vin(xi), Rin = Rn(xi), i@ = (1,2). This
fourth degree equation shows that the determination of
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Table 1. Simplified representation of the numerical procedure.

Simulation : Vcl(t) and R(t) (eq. 6, 7, 8, 9)

Addition of noise

Read V(t) and R(t) at sites(1-2)

A 4

Read Rheological parameters p, 1, ®, d, R

Comparison between given (Y;)
and computed (v.) value of y

A

Computation of vy (eq. 14)

propagation coefficient is possible, starting from the mea-
surement of instantaneous radius and velocities in two sec-
tions of an arterial tree. The physical solution of such an
equation is obtained thanks to the condition a > 0 and
C > 0. The diameter of vessel can be obtained by echo-
tracking [13], blood velocity can be also measured by ul-
trasound Doppler techniques [4].

2.2 Parameters and numerical model

In order to validate this method we present a numerical
simulation using theoretically computed velocity and ra-
dius. We consider a uniform tube of finite length equal
to ‘L’, loaded with a distal resistance ‘K’ and filled with
viscous fluid as shown in Figure 1 (top). A single impulse
of fundamental frequency Fy = 1 Hz, was generated in
the tube. The number of harmonic constituting the signal
was equal to 15 harmonics. The wave speed of velocity
and radius is ‘C’. The attenuation is equal to ‘a’. The
distance between transducers was chosen to be equal to
d = 3 cm. Sinusoidal velocities and radius signals of dif-
ferent frequencies were used for the simulation. To respect
the assumptions of linearity we have chosen an amplitude
of velocity signal lower than 0.5 m/s and an amplitude of
radius displacements lower than 0.4 x 1072 m.

We assumed the following parameters values as input
values: L = 43.3 cm; d = 3 cm; p = 1.05 x 10® kg/m?;
n=33x10%m?s" !y 2y =5 cm; a; =04 m~ L.

The numerical computation can be summarised in the
following way (Tab. 1):

1/ Simulation: for a given set of values of v, K, wg, Py,
p, Ro, , L, x1, and x2, and using equations (6), (7), (8)
and (9) we compute the simulated velocity and radius at
r=x1,and x = x5 = x1 +d.

2/ Noise: to take into account the experimental noise,
we added noise to velocity and radius.

3/ These noised quantities are now used, with the val-
ues of K, wyg, p, Ro, 1, and d to resolve equation (15) and
compute v, which is compared to the initial given value 7, .

Vel (t) or Ry (t) Vel (t) or Ra (t)

v v
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Fig. 1. (Color online) Top panel shows schematic diagram of
the strained tube with a site of reflection located at x = Lg.
used for the simulation of waves, d was the distance between
transducer. Bottom panel shows examples of the velocities
(left) and radius (right), noisy waveforms (5%), in site 1 (blue),
site 2 (green) used on simulation.

3 Results

Bottom panel of Figure 1 shows examples of the veloc-
ities (left) and radius (right), waveforms with noise of
5%.at the two different sites used in the simulation: site 1
(blue), site 2 (green). The first result is presented Fig-
ure 2 for noiseless signals. The normalised phase velocity
Cy, (i.e. the computed phase velocity C. divided by the
input value C;) is computed at each frequency between 1
and 15 Hz, in a viscoelastic tube of length L, for low reflec-
tion coefficient (top panels) and high reflection coefficient
(bottom panel). We simulated two distances between the
transducers: a small distance (d = 3 cm at left) or a large
distance (d = 8 cm, right). In each panel we plotted in
green the “apparent phase velocity” derived by assuming
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Fig. 2. Normalized phase velocity (computed phase velocity divided by the input value of C') obtained by RV-method: without
noise (A), normalised “apparent phase velocity” (o), for uniform viscoelastic tube, of length L = 43.3 c¢cm at low reflection
coefficient K = 0.36 (top panels) and high reflection coefficient K = 0.86 (bottom panels). The panel in the left column show
data obtained for (d = 3 cm), the panel in the right column show data obtained for (d = 8 cm).

an unidirectional propagation and the actual phase veloc-
ity (in blue) computed by the RV-two point method for the
same physical and geometrical parameters. Figure 3 shows
the results giving the normalised attenuation a, (i.e. the
computed attenuation a. divided by the input value of a,
a;) over the range of frequency in a similar manner as in
Figure 2. Figures 2 and 3 show a very good agreement
between simulated and theoretical wave speed and atten-
uation. Values obtained are close to theoretical values at
low and high reflection coefficient. While “apparent wave
speed” and attenuation show an oscillatory behaviour over
the range of frequency investigated. The amplitude of os-
cillation of apparent phase velocity is greater at high fre-
quency. It is one and half time the phase velocity and ten
time the attenuation obtained by RV-two point method at
low reflection coefficient (K = 0.36). Moreover the ampli-
tude of “apparent wave speed” and attenuation increases
with the augmentation of the reflection coefficient. We can
see, in Figure 2 (bottom) that the apparent phase veloc-
ity is about three and an half times the theoretical value
which is quasi equal to the wave speed obtained by RV-
two point method. Figure 3 (bottom) shows an “apparent
attenuation” of fourteen times the theoretical value. The
phase velocity and attenuation, derived from our method
are in a good agreement with theoretical values for low
and high reflection coefficient.

Figure 4 shows the results for simulated normalised
phase velocity (left) and normalised attenuation (right)
in the case of noisy signals (noise level = 0%, 2% and
5%). The computed values oscillated slightly about the
theoretical values. The amplitude of oscillation, increases
with frequency for both phase velocity and attenuation,
while the discrepancy is greater for attenuation. Increasing

the amplitude of noise, affects the determination of the
true propagation coefficient.

Figure 5a shows three dimensional frequency pattern
of wave speed, between 1 and 10 Hz for different values
of reflection coefficient, which increases from 0.06 to 0.96.
The phase velocity values computed by RV-two point
method, are in a close agreement with theoretical values
over the investigated range of frequency. The augmenta-
tion of reflection coefficient has no effect on the determi-
nation of the true phase velocity.

Figure 5b shows three dimensional frequency pattern
of normalised attenuation, between 1 and 10 Hz for dif-
ferent values of the reflection coefficient, which increase
from 0.06 to 0.96. Attenuation computed on all sections,
shows similar behaviour. An increase of the reflection co-
efficient has no effect on the determination of wave speed
computed by the RV-method. The deviation of attenua-
tion values computed by the RV-method over the range of
frequency is very small; it varies between 1.001 and 0.999
times the theoretical value for all values of reflection coef-
ficient used over the investigated range of frequency.

The deviations of phase velocity and attenuation, are
small compared to the theoretical values, the maximum of
wave speed obtained by RV-method over the range of fre-
quency investigated is 1.001 times the theoretical values;
and the minimum was about 0.999 times the theoretical
phase velocity.

Figure 6a shows three dimensional frequency pattern
of normalised wave speed, between 1 and 10 Hz for dif-
ferent values of the position of the equivalent site of re-
flection, which vary between L = 16 cm and L = 96 cm.
The simulated values of wave speed are in a good agree-
ment with theoretical values over the investigated range
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Fig. 3. Normalized attenuation (computed attenuation divided by the input value of a) obtained by the RV-two point method:
without noise (A), normalized “apparent attenuation” (o), for uniform viscoelastic tube, of length L = 43.3 cm. The legend
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Fig. 4. Frequency patterns of normalised phase velocity (a, left) and normalised attenuation (b, right) for different amplitude

of noise (0%, 2%, and 5%).

of reflection coefficients while some discrepancy can be
observed at high frequency. The deviations of the phase
velocity values computed by the RV-two points method
at high frequency are small. They are about 1% of the
theoretical values.

Figure 6b shows a three dimensional frequency pat-
tern of normalised attenuation, between 1 and 10 Hz in
the same manner as in Figure 5. The deviations at high
frequency are greater than that observed for wave speed.

4 Discussion

The aim of our study was to present a theoretical linear
method, for estimating propagation coefficient in arterial

vessels, to validate the method by simulation and inves-
tigate the effect produced by changing different parame-
ters on the determination of propagation coefficient. This
method, based on four arterial wave form measurements,
measurement of radius and centre line velocity at two ar-
terial sites, can be applied non-invasively using Doppler
techniques. Moreover linear analysis, has the advantage
that the system of equations can be solved in the fre-
quency domain with taking into account the viscoelastic
behaviour of the vessel wall

The assumption of linear arterial system is violated
in great arteries as in aorta where Milnor et al. [18],
found values of peak velocities representing a signifi-
cant fraction of phase velocity. Arnold et al. [34] and
Reneman et al. [35] have shown that radial displacements
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Fig. 5. Three dimensional view of frequency pattern of normalized phase velocity (a, left) and normalised attenuation (b, right)
for different reflection coefficient values (from 0.06 to 00.96 by steps of 0.10).
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Fig. 6. Three dimensional view of frequency pattern of normalized phase velocity (a, left) and normalised attenuation (b, right),
for different tube lengths. Reflection coefficient K = 0.56, attenuation a = 0.4 m~! and theoretical phase velocity C' = 12 m/s.

of human great arteries are about 10% of the radius.
Learoyd and Taylor [36] showed a non-linear pressure-
radius relationship. Nevertheless, several studies found
that linear model, where we can include easily wall vis-
coelastic properties, seems to be more appropriate than
non linear model: Comparatives studies [24,37], using
non linear or linear model including viscoelastic wall be-
haviour, showed an agreement between linear and non
linear response. Phytoud et al. [12] concluded that lin-
ear analysis would suffice for most clinical purposes. The
linear model has the advantage that it is easier to solve
accurately the governing equation of fluid and wall than
with non linear model.

The fundamental result arising from our work is that
linear model, including wall viscoelasticity, gives good pre-
dictions of phase velocity and attenuation for all reflec-
tions coefficient values over the whole range of frequencies
investigated (1-10 Hz), in particularly at low frequency as
shown in Figure 5a corresponding to phase velocity and
Figure 5b corresponding to the attenuation. The phase
velocity and attenuation, obtained are close to the theo-
retical values for non noisy radius and velocities signals.

The computed values of phase velocity and attenuation
fluctuated slightly around the theoretical values at low
frequency when we add noise of 5% to radius and veloci-
ties (Figs. 4a and 4b). The deviations are greater at high
frequency, which can be easily explained by the decrease
of the signal-to-noise ratio. Even in the absence of noise
(Fig. 2) the apparent phase velocity shows an oscillatory
behaviour ; its magnitude increases with increasing the
value of the reflection coefficient over the investigated
range of frequency. Similar behaviour has been found in
experimental works done by Reuderink et al. [17]. The
same conclusion can be deduced for the attenuation as
shown in Figure 3.

Comparison between Figures 2a and 2b, which
correspond to the same physical and geometrical tube pa-
rameters, but for different distances between the sites of
measurements, allow to conclude that phase velocity de-
termination is quasi independent (without noise) on dis-
tance between transducers. This finding is in agreement
with experimental conclusion derived by Ursino et al. [27].
The same conclusion can be derived for attenuation as
shown in Figure 3.
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The results obtained at two values of reflection coeffi-
cient (top and bottom panels of Figs. 2 and 3) for the same
length, show that the “apparent propagation coefficient”
is strongly affected by augmentation of the reflection co-
efficient, while the propagation coefficient computed by
the RV-two point method is not affected by increasing
reflection coefficient and still close to theoretical values.
This finding confirms the interest of our method.

An other important result carried out from our work,
shown in Figures 5a and 5b, is that the method is slightly
sensitive to the effect of augmentation of wave reflection
for the entire range of frequency investigated. The values
of wave speed are close to theoretical values except for high
reflection coefficient and frequency. Values of wave speed
and attenuation vary between 0.999 and 1.001 times the
theoretical values over the range of frequency correspond-
ing to a variation of refection coefficient between K = 0.06
and K = 0.96, witch corresponds to physiological values
of this coefficient in normal hemodynamic conditions. Sev-
eral authors estimate that normal reflection coefficient is
higher as 0.8 in femoral artery in normal condition, as re-
ported by Westerhof et al. [38]. This value can be increased
up to 0.95-1, in presence of vasoconstriction. Nichols and
O’Rourke [39]. Li et al. [28] estimate that the reflection
coefficient amplitude was in the range 0.3-0.7 at low fre-
quencies, and in the range 0.1-0.3 at high frequencies.

The simulated results of phase velocity and attenua-
tion plotted against the length of the tube — which corre-
sponds to an equivalent position of the site of reflection —
over the range of frequency is shown in Figure 6. They turn
out the independence of computed propagation coefficient
on the length of the tube. They clearly show that increas-
ing tube length from L = 0.16 to L = 0.96 has no effect
on the determination of both wave speed and attenuation.
These values oscillated slightly about theoretical values
only at high frequency. The magnitude of oscillations in-
crease with increasing frequency but still lower than 1%
for both phase velocity and attenuation. The length values
used here correspond to many human arterial trees, as the
femoral, tibial and subclavian artery as reported by Wang
et al. [40], which make might our method to be useful for
in vivo applications.

Figure 6a shows the normalised phase velocity over
the range of frequency plotted as function of the tube
length, the computed values are in good agreement with
the theoretical one, and depend slightly on the frequency.
The discrepancy is larger for attenuation as shown in Fig-
ure 6b and for all other data. This finding confirms the
literature report [26,31]. The reason for this discrepancy
can be explained by the method used to compute them:
attenuation and wave speed are respectively the real and
imaginary part of propagation coefficient, therefore; they
will be calculated with the same absolute error, and the
computed values of attenuation related to the imaginary
part will be more affected than values of phase velocity.

In this work we had investigate by simulation, a new
method for the determination of propagation coeflicient,
based on the non invasive measurement of velocity and
radius at two sections of a tube or of an arterial tree. The
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effect of reflection and of the length of the tube have been
studied at high and low wave speed. The results obtained
using our RV-two point method for both phase velocity
and attenuation are in a good agreement with the theo-
retical values over the range of frequency investigated. For
noisy signals, attenuation shows a fluctuating behaviour
only at high frequency. The amplitude of the fluctuations
increases, with increasing the frequency values but still
lower than 2% for phase velocity and 5% for attenuation
for low frequencies (F' < 6 Hz). The method is more pre-
cise for low frequencies corresponding to the first harmon-
ics. The phase velocity and attenuation computed over
the range of frequency, was in good agreement with the-
oretical values independently of reflection coefficient. The
increase of reflection coefficient doesn’t affect the accuracy
of computed phase velocity. The source of the small dis-
crepancy seems to be caused by numerical error due to use
of Fourier analyse when the continuous spectrum is trans-
formed into a discrete spectrum by the FFT algorithm,
and the small amplitude of the higher components of the
signal in the frequency range. We have also to recall that
equation (15) is based on the hypothesis v,d < 1, with
v = a 4 iw/C hypothesis which is not very realistic for
high frequencies.

5 Conclusions

We presented in this paper a new method for estimating
propagation coefficient from non invasive measurements
of velocity and radius in two sites of an arterial tree.

In all cases studied, both attenuation and phase veloc-
ity computed by our method are in good agreement with
theoretical values. Small deviations are shown at high fre-
quencies when increasing reflection coefficient. The accu-
racy of the method decreases when increasing frequency.
The discrepancies between theoretical and computed at-
tenuation values are larger than those of phase velocity for
the same physical and geometrical condition but are still
very small. Nevertheless, the values of propagation coef-
ficient carried from this method are slightly affected by
noise. This method is quite simple which does not require
heavy computational methods, and can be easily used in
clinical environment. It is robust considering the noise of
the signals. The results show also clearly that one takes
advantage to use the low frequency range of the signal to
improve the quality of the indirect measurement of the
propagation coefficient.

The authors are thankful to the assistance of Srair Ayoub and
Amimi Adel for their help regarding the simulation problem.
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