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Abstract: Segmentation of noisy and low-contrast images remains one of the most challenging and 

difficult tasks, especially in the context of medical imaging. In this work, we propose an extension of 

the Active Shape Models (ASM) which is based on a priori knowledge about the shape and the defor-

mation modes of the studied Region(s) of Interest (ROI). The main contribution of the proposed ex-

tension resides in the integration of a statistical directional relationship within the ASM, which is 

learned during a training phase. In particular, in order to force the active contour to move towards 

points in space that satisfy the spatial relationship, we propose a fuzzy directional constraint that allows a more robust lo-

calization of ROI. In fact, the learned a priori knowledge has been modeled using fuzzy logic in order to model uncer-

tainty and ambiguity of the spatial representation. Realized tests on scintigraphic and MRI images proved the performance 

of the proposed model for the detection of multiple objects of interest in noisy and low-contrast images, even when real 

contours are ill-defined. 
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1. INTRODUCTION 

Image segmentation is an essential low-level step for 

many applications in the field of image processing and com-

puter vision. In medical imaging, the segmentation aims to 

extract one or many regions of interest (ROI) in the image. It 

can assist clinicians to diagnose the diseases more easily and 

more accurately. Indeed, the result of the segmentation often 

determines which treatments are more likely to be proposed 

in downstream. The existing methods, for the segmentation 

of medical images, can be grouped into two main classes: 

supervised methods and unsupervised ones. Unsupervised 

methods do not use any prior knowledge and are fully based 

on low-level features which are implicitly driven from pix-

els’ intensities. These methods have the major disadvantage 

of being not robust enough and often require post-processing 

to refine the delineation of ROI. Indeed, unsupervised meth-

ods are highly sensitive to noise and produce satisfactory 

results only if the contrast between structures of interest is 

sufficiently marked. To overcome these drawbacks, super-

vised methods incorporating prior knowledge, such as shape, 

position and orientation, are increasingly used. Supervised 

methods have the ability of segmenting even images with no 

well defined relation between regions and pixels’ intensities. 

These methods can be grouped into three basic classes: atlas-

based methods [1], deformable models [2] and methods 

based on spatial relationships [3].  

Atlas-based methods are generic, but their use is limited 

seen their high computation cost. This is mainly due to the 

necessity of a registration step. A deformable model consists 

to initialize a contour that will be subsequently deformed and 
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moved to coincide with the edges of ROI, according to an 

energy term. Segmentation methods based on deformable 

models are broadly classified, according to their representa-

tion, as parametric, geometric and statistical active contours. 

A parametric deformable model is based on minimizing the 

deformation energy (e.g. snakes [4]). However, this model is 

not adapted to the topology changes. Geometric active con-

tours are based on the theory of curve evolution (e.g. level 

sets [5]). This is done by moving the initial contour to the 

object of interest in the normal direction. Thanks to their 

ability to adapt the topology changing, geometric deformable 

models allow the simultaneous detection of multiple objects. 

However, they fail to treat images with discontinuous con-

tours. Finally, statistical deformable models (e.g. active 

shape models and active appearance models) [6] differ from 

the other deformable models because of using a training 

phase. In particular, Active Shape Models (ASM) incorpo-

rate a priori knowledge about the shape in order to delineate 

accurately ROI. Many works [7, 8] demonstrated the effec-

tiveness of ASM for various medical applications. In fact, 

this model has the advantage of taking into account the ana-

tomical variability of the topologies and automatically han-

dles the topological change. However, it requires a large 

training set and the manual intervention of experts. Besides, 

results are not satisfactory in the case of noisy, low-contrast 

and/or low-resolution images. The last class of supervised 

segmentation methods is the one based on spatial relation-

ships. These relationships are used to select the correspond-

ing regions according to a predefined description or to con-

strain the deformable model [9]. To profit of a priori knowl-

edge based on the spatial relationships in the segmentation 

process, a knowledge-gathering phase is required. It consists 

to decompose the image into a set of entities linked by spa-

tial relations. Then, a model-based representation of these 

relationships is defined. However, the segmentation results 

are highly dependent on the modeling step.  
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In this work, we are particularly interested in the integra-

tion of spatial knowledge into active shape models, in order 

to minimize the dependence of the segmentation results on 

the initialization step and on the image quality (noise, low 

resolution, low contrast…). Indeed, few works have opted 

for the combination of statistical models with those based on 

spatial representation [10-14]. Nevertheless, given the com-

plementarity between these two models, it seems obvious 

that spatial relationships could be combined with ASM while 

improving the accuracy of segmentation results, notably for 

low-quality images. Existing works have introduced differ-

ent extensions to ASM by integrating learned models on the 

distance variation between studied structures, in order to 

control the shape models progress. However, distance-based 

models are not invariant under scaling. Besides, most of spa-

tial relationships suffer from inaccuracy. In our case, a priori 

angle-based knowledge is learned before being modeled us-

ing fuzzy membership functions in order to model the uncer-

tainty and the ambiguity of the spatial representation. In fact, 

since spatial relationships usually suffer from ambiguity, we 

adopted a fuzzy model to constrain the deformation of con-

tours while taking into account the uncertainties and inaccu-

racies associated with these relationships. This representa-

tion allows forcing the active shape heading to the actual 

contour, even in the presence of heavy noise. Indeed, the 

added spatial constraint reduces variations of the initial con-

tour and likely shift to other regions whose shapes or intensi-

ties are similar to those of the regions of interest. This is en-

sured thanks to the definition of an eligible area for the posi-

tions of these regions. Moreover, during the phase of ROI 

delineation, the suggested model allows either the confirma-

tion of the new position of the deformable contour, or the 

displacement of this contour according to the allowable 

space of angles’ variations. More precisely, the proposed 

method considers two essential informations during the de-

formation of ASM: a shape constraint related to the target 

object and a direction constraint. This spatial constraint 

avoids collisions and remoteness of ROI contours during the 

deformation process. Thus, the evolution of the proposed 

estimations is controlled, at each iteration of the localization 

phase, using the direction constraint. This permits to attract 

the initial contour towards the ROI while avoiding the fact 

that the contour is conducted towards other regions of the 

same visual appearance. The suggested method permits to 

delineate automatically multiple ROIs in a medical image. 

This delineation can assist clinicians in many steps of vari-

ous clinical routines steps, such as tumor segmentation, tu-

mor recognition, lesions malignancy tracking and quantiza-

tion of diagnosis attribute. 

The rest of this paper is structured as follows. In section 

2, we introduce the proposed segmentation method which 

integrates a fuzzy spatial constraint on direction in active 

shape models. In section 3, some experiments with an objec-

tive assessment, on synthetic images as well as on real-world 

scintigraphic and MRI images, are produced. Lastly, conclu-

sions and ideas for further works are summarized in section 4. 

2. PROPOSED METHOD 

The objective of this paper is to integrate a spatial con-

straint into active shape models. The constraint consists in 

describing the orientation of the ROI according to a refer-

ence point (the origin of the image). This can overcome 

some limitations of ASM, specially its dependence on the 

initialization step and on the image quality. Thus, the ROI 

localization can be more accurate, even in noisy images, 

images of low resolution and low-contrast images. In fact, in 

addition to the integration of spatial information into ASM, 

the originality of the proposed method resides in modeling 

the spatial constraint by the fuzzy logic in order to restrain 

the contour deformation towards the ROI. This permits to 

attract the initial contour towards the object of interest, while 

avoiding above all that the contour moves towards another 

object of the same visual appearance. Indeed, proposed 

method is composed of two main phases. The first one is an 

offline training phase allowing the building of the shape and 

the orientation models. Given the learned shape and orienta-

tion constraints during the training phase, the second phase 

consists to localize the ROI in a new test image. In what fol-

lows, we briefly recall the principle of ASM before present-

ing the proposed extension. 

2.1. Background: Conventional Active Shape Models 

ASM [6] consists in deforming iteratively an initial con-

tour in order to be close to the real contour of the ROI. To do 

this, an offline training phase is firstly applied in order to 

construct the Point Distribution Model (PDM), which per-

mits the modeling of a priori knowledge on the eligible 

shapes. The PDM construction consists to manually label a 

contour on the ROI for each image i of the training set (of 

size M), that will be marked with n landmarks (n is a con-

stant). This is done using a training set of images represent-

ing the possible variations of the object to be detected. Thus, 

each shape i is represented by a vector Xi of dimension 2n as 

follows (1): 

}{
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where, xi and yi (1  i  n) are the coordinates of the points 
forming the manually labeled contour. Then, an iterative 
algorithm aligns the M shapes in order to define the mean 
shape X . Finally, a statistical analysis based on Principal 
Components Analysis (PCA) defines the eigenvectors of the 
covariance matrix. This aims to determine the principal di-
rections and their main modes of variations. Then, a shape 
model is defined to describe the shape variations (2), which 
may be represented as a function of the mean shape and the 
variation of the principal directions (the eigenvectors of the 
covariance matrix). The defined model illustrates a compact 
representation of allowable space of the shape variations.  
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where, P is the matrix of the t more significant eigenvectors, 
bj=(bj

1,…, bj
t)T is the weight vector that represents the projec-

tion of the shape Xj on P. The allowable values for the 
weight bj

k (1  k  t) typically vary between -3
k

 and 

+3
k

 (
k
 is the kth eigenvalue of the covariance matrix), 

which is often referred to as the allowable shape space. 
Then, the localization phase serves to search a shape in a 
new image using the PDM. It consists to start by an initial 
estimation of the mean shape X  (initial contour). This esti-
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mate is subsequently deformed towards the borders of the 
studied ROI. In fact, the shape is subsequently deformed 
iteratively towards the edges of the ROI, given the allowable 
space defined in the training phase, and the gray level of 
pixels belonging to the normal on each point of the contour. 
The best position of each landmark is then determined by the 
research of the best profile according to that calculated at the 
same position in the mean shape. The comparison of the two 
profiles is carried out using the Mahalanobis distance (3).  

1
(g, ) (g ) S (g ),

Td g g g=           (3) 

where, g is the profile constructed at each landmark, g  is the 
profile associated with the mean shape of the same landmark 
and S is the covariance matrix according to the profiles of 
reference landmarks. The most similar pattern to the profile 
of the mean shape is the one minimizing this distance. Thus, 
each landmark is moved to the point of the profile that is 
most similar to the profile of the mean shape according to 
the Mahalanobis distance [15]. 

2.2. Integration of a Spatial Constraint into ASM 

In the proposed method, we consider two important con-

straints during contour deformation: the ROI shape (as de-

fined in the conventional ASM) and its orientation. In fact, at 

each iteration of the localization phase, we verify the shape 

and the orientation constraints before moving the contour . 

Indeed, our experiments proved that using the shape model 

alone; to describe the shape variations; do not guarantee an 

accurate delineation of the ROI. In most of cases, this model 

is not specific enough to permit arbitrary variation different 

from that seen in the training dataset. Thus, we integrate an 

orientation model in order to model a priori knowledge on 

the eligible orientations of ROI. More precisely, we estimate 

the angle between the ROI and a reference object. Then, we 

deform the contour according to the allowable space of ori-

entation variation, which is defined in the training phase. In 

fact, the integration of the orientation is performed through a 

modeling phase followed by a localization phase. In the first 

phase, for each image of the training set, we mark the center 

of gravity P of the ROI, given the manually labeled land-

marks. Then, we compute the angle between the vertical line 

J  and the vector PO  (Fig. 1). This permits to define a model 

describing the authorized space variation of the orientation , 

according to the set of estimated angles relatively to the im-

ages composing the training dataset. In fact, given the angles 

min, max and  representing respectively the minimum, 

maximum and mean angles defined in the training phase, the 

authorized space of orientation variations is defined by the 

interval [ min, max] illustrating the plausible variations of the 

ROI orientation. Note that we opted for using angles, instead 

of distances [7], to illustrate direction constraints in order to 

be invariant against scaling change.  

The defined direction constraint allows controlling the 

evolution during the localization stage, in order to avoid col-

lisions and the remoteness of objects contours. However, 

spatial relationships generally have problems of ambiguity 

[16] what justifies the adoption of fuzzy logic since this for-

malism takes into consideration uncertainties and inaccura-

cies linked to these relations [7]. Indeed, we have adopted a 

fuzzy model in order to represent contours’ deformations and 

to avoid that the deformable model is attracted by the con-

tours of other objects than that composing the ROI. In par-

ticular, we aim to maintain angles during the localization 

phase. This is done using a fuzzy set representing the satis-

faction degree of the object orientation with respect to a ref-

erence object at any point in space. To do this, we specified 

each spatial relationship by a piecewise affine function. In 

fact, given the angle between the vertical line J  and the vec-

tor PO  of the current contour , we defined three fuzzy 

membership functions describing the spatial disposition of 

the contour  according to the allowable space of orientation 

variations [ min, max]. This consists to define three fuzzy 

degrees of positioning of the contour , relatively to the al-

lowable space [ min, max], “on the left” μL (4), “on the right” 

μR (5) and “at an angle approximately equals to ” μ~ (6), 

such that  , μL( )+μR( )+μ~( )=1. Fig. (2) illustrates an 

example of the defined spatial membership functions for the 

case of min=30°, max=80° and =60° ( 1=45° and 

2=70°). 

min
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Thus, in the localization phase, we take into account the 

two informations of shape and orientation, in order to detect 

the ROI in a new image. Indeed, after defining the initial 

contour using the average shape X  of the shape model, we 

proceed to the iterative shifting and deformation of the con-

 

Fig. (1). Illustration of the angle concept for a single object. 
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tour  while respecting the shape model. Then, we applied 

the orientation model either to confirm the new position of 

the contour, or to move  according to the allowable space of 

angle variations. In fact, after estimating the relative angle  

of the current contour , we deform the contour according to 

the admissible space of orientations, already defined in the 

training phase. Thus, the initial contour evolves according to 

the shape model and to the angle model. Indeed, at each it-

eration, if the angle  between the vertical axis and the vec-

tor OP  belongs to the interval [ 1, 2] (the green space in 

Fig. (3)), the shape model is validated without needing to 

change the position of the contour according to the angle 

model. This corresponds to the case where μL=0, μR=0 and 

μ~=1. Else, if the angle  is lower than min (resp. higher than 

max) then the current contour is totally on the left (resp. on 

the right) of the allowable angle space. This corresponds to 

the case where μL=1, μR=0 and μ~=0 (resp. μL=0, μR=1 and 

μ~=0). In this case, the contour should be moved towards 

the allowable angle space by translating it by a distance of 

||OP ||.sin( ) (resp. W-||OP ||.sin( )), where W denotes the 

width of the input image) in the direction of right (resp. of 

left). Otherwise, if the angle  belongs to the interval ] min, 

1[ (resp. ] 2, max[) then the current contour is partially on 

the left (resp. on the right) of the allowable angle space (the 

orange space in Fig. (3)). This corresponds to the case where 

μL ]0,1[, μR=0 and μ~  ]0,1[ (resp. μL=0, μR  ]0,1[ and 

μ~  ]0,1[). In this case, the contour  should be partially 

moved towards the allowable angle space according to the 

non-zero values among μL, μR and μ~. This amounts to move 

the contour by a distance of μ~( ).(||OP ||.sin( )) (resp. W-
μ~( ).(||OP ||.sin( ))) in the direction of right (resp. of left). 

In all cases, the initial contour is moved iteratively towards 

the ROI and then the contour evolution is oriented directly to 

the desired object according to the allowable orientation 

space [ min, max] previously defined. Thus, the direction 

constraint forces the shape model to move in an acceptable 

space of authorized orientations (Fig. (4)). The iterative lo-

calization process does not stop until the convergence condi-

tion is satisfied or a predefined number of iterations is 

reached. In our case, the iterative deformation process of the 

contours stops only when a small proportion of landmarks 

continues to move.  

 

Fig. (3). Illustration of the allowable space of angle variations for 

the case of min=30°, max=80° and =60° ( 1=45° and 2=70°). 

Fig. (4). ROI localization steps on a real scintigraphic image. 

 

Fig. (2). The fuzzy degrees of positioning of a contour , relatively to the allowable space [ min, max], “on the left” μL, “on the right” μR and 

“at an angle approximately equals to ” μ~. 

initial contour shifting and deformation of the contour

shifting and deformation of the contour segmentation result



Integration of a Fuzzy Spatial Constraint into Active Shape Models Current Medical Imaging Reviews, 2015, Vol. 11, No. 1     19 

 

initial contour ASM 

 

proposed method 

Fig. (5). Comparison of segmentation results, between the conven-

tional ASM and the proposed method, on noisy synthetic images. 

3. EXPERIMENTAL RESULTS 

To evaluate the performance of the proposed segmenta-

tion method, we begin by applying it for the localization of a 

single object before presenting a generalization of the proc-

ess for multiple object localization. Tests were performed on 

synthetic images as well as on complex real-world scinti-

graphic and MRI images. 

3.1. Single object localization 

In order to demonstrate its accuracy and its robustness, 

the proposed segmentation method has been used for the 

delineation of a single region of interest in synthetic images 

as well as in real-world medical images. On one hand, we 

have built a dataset composed of 18 noisy synthetic images, 

of size 550 400 pixels. Eight images were used for the train-

ing phase and the remaining ten images for the test phase. 

These images show clearly the contours objects, and then 

enable us to evaluate the behavior of the segmentation 

method against several challenges (sensitivity to initializa-

tion, presence of noise…). We compare the results of the 

proposed method with those produced by the conventional 

ASM, for the localization of a single object in noisy images 

with different initializations. In fact, we tested two configu-

rations (Fig. (5)): optimal initial contour (close to the target 

object) and random initial contour (far from the target ob-

ject). The obtained results confirm the inaccuracy of the 

conventional ASM, since good results are recorded only 

when the initial contours are close to the ROI. However, the 

introduction of the direction constraint has attenuated re-

markably this limit, what proves that the proposed model 

allows more robustness against the initialization step, com-

paratively to the conventional ASM. Also, it is clear that the 

noise does not significantly affect the localization results 

especially in the first case when the initialization is opti-

mized (close to ROI). Indeed, we distinguish the divergence 

of the standard ASM model while the proposed model has 

converged to the ROI despite the presence of noise and that 

the initialization was random (far from ROI). This proves the 

robustness of the proposed model against the noise and the 

initialization step. In fact, the integration of the spatial rela-

tionship allows an accurate extracting of the object of inter-

est, even if the initialization is relatively remote and the 

noise is intensively present. 

On the other hand, we used the proposed method for de-

tecting the left ventricle of the heart, given a set of scinti-

graphic images showing the different possible shapes of 

heart during its beating cycle. These images have low con-

trast, low resolution, and the objects contours are hard to 

extract. This is why the objects localization is difficult in 

such images. We used a variety of images that come from 10 

different patients. Indeed, the used dataset contains 10 se-

quences of scintigraphic images of the heart. From each se-

quence, composed of 16 images of size 128 128 pixels, we 

chose some images for the training phase to cover the differ-

ent variations and we used the remaining images for testing 

the segmentation performance. Our goal is to detect the left 

ventricle of the heart in these ill-contrasted images. To do 

this, we compared the segmentation results before and after 

the integration of the spatial constraint (Fig. (6)), for various 

initializations (optimal vs. random). We can clearly conclude 

that, comparatively to the conventional ASM, the proposed 

method is much less sensitive to the initialization, what con-

firms its reliability for ROI detection. In fact, according to 

the realized tests, we can confirm that the shape constraint of 

the conventional ASM is unable alone to avoid that the con-

tour is conducted towards other regions of the same visual 

appearance. However, the integration of the constraint direc-

tion into the ASM model, improves significantly the results 

of the segmentation, since this constraint limits the move-

ment of the contours thereabouts real edges of the ROI. 

Moreover, in order to evaluate visually the recorded re-

sults, we performed a comparison of the ASM with and 

without the introduced spatial constraint with respect to ex-

  

optimal initialization random initialization 

  
segmentation results 

Fig. (6). Comparison of segmentation results, with various initiali-

zations, between the conventional ASM (in red) and the proposed 

method (in blue) on real scintigraphic images. 
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pert contour (given a ground-truth). We attempted to confirm 

this visual rendering through the comparison of obtained 

localization with the expert delineation. This comparison 

shows that the suggested method is particularly close to the 

expert segmentation (Fig. (7)). Indeed, the fuzzy directional 

constraint attracts the initial contour to the ROI, since the 

trace of the evolution of the initial contour’s deformation is 

oriented directly to the target object. Unlike the conventional 

ASM, the deformation of the contour moves towards the 

similar appearance objects, while largely avoiding the con-

tour displacement towards another object having the same 

visual appearance. Thus, the segmentation using the ASM 

integrating the spatial constraint is more accurate than the 

ASM without this constraint. We have also evaluated objec-

tively the produced results, while measuring the distance 

between the ground-truth contours (manually defined by an 

expert) and the ones detected by the proposed model and by 

the conventional ASM, respectively. In fact, we used a modi-

fied version of the Hausdorff distance (MHD) [17] to assess 

quantitatively the degree of similarity (7) between the con-

tour of the expert (EC) and the outline segmentation result 

(CR), for a set of 11 challenging images. In order to compare 

the results of both techniques, we chose two different scenar-

ios: an optimal initialization of the contour and a random 

initialization of the contour. We remark that the recorded 

MHD values by the proposed model are lower than the val-

ues coming from the classic ASM (Fig. (8)). This proves that 

the proposed method is much more accurate, independently 

of the choice of the initial contour. In fact, in the case of an 

optimal initialization (resp. random initialization) the mean 

MHD distance is 3.19 (resp. 19.46) for the standard ASM 

and only 2.19 (resp. 2.43) for the proposed model. These 

results confirm the reliability and the robustness of the pro-

posed model compared to the conventional ASM. Indeed, 

segmentation after integrating the spatial constraint is similar 

to the segmentation of the expert regardless of the position of 

the initial contour, even in the presence of noise, low resolu-

tion, low contrast and the presence of nearby objects with 

similar intensities. 

Fig. (7). Comparison of the evolution of the deformations (in yel-

low) of the initial contour (in green) between the proposed method 

(first row) and the conventional ASM (second row), with respect to 

expert contour (in red), on real scintigraphic images (final contour 

in blue). 

1
(CE,CR) (p,CR),

p CE

MHD d=          (7) 

where,  is the number of pixels of the expert contour CE 

and d(p,CR) denotes the distance between a pixel p of the 

expert contour CE and the nearest pixel in the detected con-

tour CR (8). 

'

(p,CR) min ' .
p CR

d p p=            (8) 

3.2. Multiple Object Detection 

The suggested segmentation method has been also used 

for the delineation of many objects of interest in noisy syn-

thetic images as well as in real-world medical images. On 

one hand, we have built a dataset containing 18 noisy syn-

thetic images of size 550 400 pixels. Eight images were 

used for the training phase and the remaining ten images for 

the test phase. As previously described, synthetic images 

were used to evaluate the performance of the proposed 

method in ideal cases because of having a very well contour 

description. Of course, we will not repeat the same tests al-

ready done with images containing a single object, since the 

dependence of results against the initialization and/or the 

presence of noise is not related to the number of objects to be 

detected. However, it is related to the proposed deformation 

process. We note that the results of object detection are en-

couraging for the case of synthetic images. Indeed, the pro-

posed segmentation method was able to delineate precisely 

the set of objects of interest. In addition, the final contour 

(Fig. (9)) is almost close to the expert contour (in red). This 

permits an accurate localization of the ROI and affirms the 

reliability of the proposed segmentation method in the case 

of multiple objects even in the presence of noise. 

On the other hand, we applied the proposed method on 

real-world MRI images which are collected from the Web 

[18]. These cerebral images, which contain multiple objects 

(caudate nucleus, thalamus, putamen…), are challenging 

since they are characterized by the absence of visible con-

tours between structures of interest and by the anatomic 

variability of these structures. The used dataset contains MRI 

brain sections and each image is composed of 255 255 pix-

els. We chose some images to cover the various changes 

during the training step, while representing the widest possi-

ble set of studied shapes. In Fig. (10), we show the results of 

the detection of the caudate nucleus and the putamen in a 

cerebral MRI image. We note that the localization results are 

very precise, and the proposed model converges to the de-

sired ROI even under low contrast and low resolution con-

straints. In fact, final contours are almost close to the expert 

contours (in dashed). As we have seen, the integration of the 

direction constraint into ASM allows the segmentation of 

many objects with worse contours definition in low-

resolution and low contrast images. Indeed, the integration of 

the direction constraint forced the shape model to move in an 

acceptable space of orientations, what avoids collisions and 

remoteness of the shape model. This demonstrates the effec-

tiveness of the proposed method even in the presence of 

neighboring structures of similar intensities. In fact, the inte-

grated spatial constraint permits the reduction of the ASM 

sensibility against the initialization and the presence of 

noise. 
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Fig. (8). Comparison of the MHD distance between the proposed method and the classic ASM. 

(a) (b) 

 

(c) 

Fig. (9). Multiple object detection in a noisy synthetic image: (a) 

initial contours, (b) evolution of the deformations, (c) final localiza-

tion of ROI. 

4. CONCLUSION AND FUTURE WORKS 

A reliable method for medical image segmentation with 

prior knowledge is proposed in this paper. This method is 

based on the integration of a fuzzy spatial relationship con-

straint of direction into the active shape models. Thus, an 

angle model is combined with the shape angle of ASM in 

order to advantageously exploit the maximum of a priori 

knowledge for an accurate delineation of the studied objects, 

since these objects are anatomical and functional structures 

associated to medical knowledge. Extensive experiments 

were performed on synthetic noisy images as well as on real-

world MRI and scintigraphic medical images with low con-

trast and low resolution. The recorded results on the tested 

images, for which difficulties arise because of the complex-

ity of the target objects, showed the robustness of the pro-

posed method for accurate tracking and detection of ROI, 

even in noisy and ill-contrasted images. In addition, in com-

parison with the conventional ASM, results show that the 

proposed model converges to the desired ROI even in the 

presence of noise and regardless of the position of the initial 

contour. Thus, the spatial relationship is a key of both ro-

bustness and accuracy, and the obtained results, whether on 

synthetic or on real-world images, show the contribution of 

the integration of the direction constraint. Indeed, adding the 
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angle constraint to ASM improves remarkably the segmenta-

tion accuracy as this constraint limits the contours’ move-

ment towards other objects. However, the allowable space of 

angles’ variation can be very huge, particularly if we used a 

large training set, what limits the contribution of the pro-

posed method. To alleviate this limitation, we propose to 

incorporate additional prior knowledge about spatial rela-

tionships to improve the quality of segmentation. Among 

spatial relationships that can be efficiently incorporated into 

the ASM, we can mention the distance separating two or 

many objects in the same image, and notably the symmetry 

that characterizes most of the medical images. We also plan 

to extend the proposed method for the general case of medi-

cal image sequences. 
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(a) (b) 

 

(c) 

Fig. (10). Multiple object detection in a magnetic resonance image 

of the brain: (a) initial contours, (b) evolution of the deformations, 

(c) final localization of ROI. 
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